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suMMARY

A quite universal mode of attack on problems which arise in super-
sonic flow, whether connected with flow over wings or over bodes of
revolution, is explained, first, in great generality, and then in more
detail, as specific applications to concrete cases are illustrated. The
method depends on the use of Fourier series in the formal definition of
the potential governing the flow snd in the setting up of the boundary
conditions. This new formulation of the many problems met in supersonic
flow is really an extension of the doublet type of “fundamental solution”
to higher order types of singularity. The limitations and, in contrast,

● the wide field ~f applicability of such a means of handling these prob-
lems with complex boundary conditions is discussed in some detail, and
a specific example of a wing-body interference problem Is cited as proof

. of the versatility of the method, because the ~eslfitsobtained by applying
the techniques expounded herein agree well with experimentally determined
data, even for the quite complex configure,tion“tmodto exemplify the kind
of problem amenable to such treatment.

1. INTRODUCTION i

For purposes of analytic treatment of the flow problem to be con-
sidered here the usual rectangular Cartesian coordinate system is employed
with the x-axis taken to lie in the direction of and having the ssme sense

+
as the uniform (undisturbed) free-stresm velocity, Vm. This free-stresm

velocity, V., is taken to be supersonic in the discussion that follows;
i.e., Vm > Ca where Ca denotes the velocity of sound in the undis-
turbed strean. The flow of the gaseous fluid to be investigated is to

*,,
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be considered as resulting from the superposition upon the free-stream
velocity of a nonuniform flow, having velocity components that are des-
ignated as Vx, Vy) ~d Vz, ‘“andlying i.nthe direction of the respec-

tive axes (x,Y,z) of the coordinate system. This nonuniform super-
imposed flow is supposed to be small enough, in comparison with the
speed of sound, C&, that it is permissible to neglect the ratios v.Jew,

/V’y%3) etc. in the equations governing the flow.

It is taken for granted that, under the conditions stated above,
there exists a velocity potential_describing the flow in question, and
in practically all cases which are of any interest for actual designs
it will really be true that this assumption canbe made legitimately.
If it is then agreed that the nonuniform superimposed part of the flow
is to be denoted by the potential @, it will be recognized that this
potential will have to satisfy the relationship:

(1)

where the free-stresm Mach number, ~, is deflnedas & = Vm/C. and,
of course, the potential @ will also have to obey the boundary condi- 9

tions which sxe peculiar to each stated problem.

Away of handling the determination of the function #, so that it
*

will satisfy equation (1) and so that it will obey the imposed boundary
conditions, will now be explained, and its usefulness illustrated by
consideration of problems which can be attacked by this means, both in
the case of lifting surfaces (that is, wings) as weld.as in the case of
bodies of revolution. The proposed method is based on the use of Fourier
series. Although this technique does not afford complete universality
in treatment of all the posed problems, as will be more clearly pointed
out in what follows, it can be used to fine advantage in a goodly number
of situations by replacing the procedures which are based on the Fourier
or the Laplace transfoms (which, for that matter, have Just as restricted
Mmits of applicability as the analogous ones which arise in connection
with the approach being discussed herein) or by being substituted in
place of the techniques which stem from use of the “fundsmental” (source,
sink, doublet) solutions to eqpation (1), or from use of transformations
carried out in the “complexplane.

2. PROBLEMS HAVING TO DO WITE FLOW OVER WII!V%

As usual, the wings are 5magined to be very slender and so placed
that the wing span lies along the y-~sj i.e., the long dimension is

●

w
*.
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out the y-axis (see fig. 1). Let the equations which define the ventral
and dorsal surfaces of the wing surface be, in fact, given in the form:

z = ZV(X,Y) and Z = Zd(X,y)

and then the slenderness of the wing is supposed to be slight enough
that the above-defined values of z will be so smsll at all locations
on these surfaces as to make it possible to accept the fact that the

dz
‘erivatives is, to all intents and purposes, equal to the direction

cosine, with respect to the free-stream x-sxis, of the normsl to the
surface. It is further assumed that the wing is imersed in a stresm
of supersonic flow which has a constant value for its component lying
in the direction of the x-axis, of magnitude Vm. The component in the
direction of the z-axis, meauwhile, is assumed to be known, but of rela-
tively small size in comparison with the V. velocity, and it may take
on various values, which will be denotedby Vz’. If, now, the potential

describing the flow perturbed by the wing is denoted by @ this poten-
tial will have to satisfy equation (1), snd it will slso have to conform
to the conditions which are imposed at the boundaries. These further
(boundary) conditions maybe statedas follows:

(2) Upstrem of a certain surface, which may be immediately defined
Just as soon as the wing-like body is specified which is to invest the
impinging stresm, the value of @ is zero; i.e., the basic condition is

$=0

(3) On the wing surface, it must be true that

()a$
Z .=~ = -Vm az– -v; cos (~~) = H(x,Y)

ax

(2)

(3)

wherein the value of z to be employed is either the Zv or Zd quanti-
ties, depending on whether one is concerned with a point which is lying
on the under ventral surface or on the upper dorsal surface, respectively.

The notation cos (M Sim fies the cosine of the angle between the
z-axis and the unit vector taken in the direction of the exterior normal
to the wing surface in question; i.e., this vector+i~ represented by the
vector n, and under the present hypothesis Cos ()n,z = *1.



It is convenient to distinguish between two basic types of problem
which come under this kind of analysis, and to make the differentiation
on the basis of the sort of boundary con&Ltion8 met with in each type;
that iS,

Symmetric Types of Configuration

In this case, the boundary conditions to be satisfied on the wing
may be expressed in the form

()3! =H(xjy)
az Z=o+

and

( qa— = -H(x,y)
Vwz=o-

Asyalmetric Types of Configuration

In this case, the bouudary conditions

(a=ofl (az=ofl

The first type of problm corresponds

are expressed

G{x,y)

(3’)

as

.

(3”)

to a configuration for which
the wing has a zero angle of attack with respect to the free-stream

+
undisturbed flow, V., andwhich possesses a symmetric profile. The sec-
ond type of problem corresponds to a cotiiguration for which the wing
is a flat plate, but which has any locti+@e of attack whatsoever,

with respect to the free-stresm VeCtOr, Vm} SO hmg as it is -1.

3. DEVELOPMENT OF THE CASE OF TEE SYMMETRIC TYPE OF CON3?IGURATION

In this case it will suffice to exszninethe flow solely in the

upper half-plane, where 2>0. If @(l)(X,y,z) stands for the flow

which takes place in this upper region, and if @(2)(x,y,z) represents
the flow in the nether region, then, of course, t

-.

+z)(x,y,z) = p(x,y, -z)
+
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The boundary conditions in this
together with the restriction that

.5

case are cmposed of equations (3’),

()@)
= O (for locations lying beyond the region

az ~=-J occupied by the wing surface) (2’)

Now let the definition of the function describing the velocity com-
ponent at the wing surface, and also the potential function itself, be
cast into the convenient forms

and

(4)

wherein ~ = x/b, q = y/b, and ~ = z/b, while b is a suitable length
used for purposes of nontiensional.ization. The value used for b will
be equal to the semispan of the wing in the case where the leading edge
of the wing is supersonic everywhere, and protided that the wing tips
are cut off in such a way that the wing surface remains outside of the
tip Mach cones emanating fran either one of the wing-tip extremities out
at the farthest reaches of the wing span. The value used for b will
be larger than this semispan Just defined, if, in contrast, these geo-
metrical relationships do not hold; the magnitude employed for b in
this latter case is illustrated in figure 2.

Finally, it should be observed that P3 is a periodic function
of y, which is equal to the values tsken on by the function H at the
wing’s surface and it is zero for points lying out of this region, and
this definition is to hold throughout the spanwise interval for which

The fact that it is possible to write H*(x,Y) in the form given
as equation (4) (i.e., the possibility of expressing the ccmponent-
velocity field describing the normal velocities to the wing surface by
mesns of a Fourier series instead of in terms of a Fourier integral)
stems from the property already noted to the effect that the perturba-
tions, which sre created at any arbitrary point P(x,y) whatsoever, do
not make themselves felt anywhere outside of the Mach cone emanating
frmn P. As a result of this situation, therefore, as far as the
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e

determination of the field of flow about the given wing is concerned, it
makes no difference to this flow whether one considers the wing to be
operating by itself as an isolated entity within the impingihg stresm or

~

whether, instead, one imagines it to be accompanied by an infinite number
of reflections of this primary wing in the planes y = tib.

If one now inserts the second of the expressions given as equa-
tion (4) into equation (1), it will be seen that this differential equa-
tion reduces to

(5)

wherein B2 . I&? - 1 andwher~ k replaces the constant ~.

Meanwhile, ~t is also evident that, on the basis of the first of
the formal developments given as eqyation (4), the boundary condition
reduces to

(6) ●

The expression given as equation (5) above is formally analogous to
.

the so-called “telegraph equation,” and its solution, which is suitable
for applying the type of boundary condition exemplified in equation (6),
is

@m= gI=~
[ 1%1(~’)Jo : @E’)2- B2K2M’

o
(7)

where Jo is the cylindrical Bessel function of zeroth order.

Consequently, the vertical derivative tumns out to be
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smd, because of the boundary condition (6), it follows that

1=hn’-~

so that the sought potential must have the form

. P~-B~
(7’)

CASE OF TEE ASYMMETRIC TYPE OF CONl?IGURATION
>

being able to find solutions to such asymmetric

4. DEVELOPMENT OF THE

The possibility of
problems by means of the method being propounded here is restricted in
this case to those configurations for which the leading edge as well as
the trailing edge of the wing are supersonic, and where the wing tips
are cut off in such a way that the wing surface lies outside of the Mach
cone emsmating fran the very tip of the leading edge where the maximum
Spszloccurs.

Under these circumstances the boundsxy conditions =e constituted
from the restrictions given as equations (3”), and of equation (2’)
once again. If one then follows the same procedure as was utilized in
section 3, it fallows that the expression for the sought potential is
formally given as (ref. 1)

(8)

where ~ is, a priori, m undetermined function, snd where it should

be recognized that the + sign is to be employed for.the lower half-plane
where { <O, and where the - sign is to be employed for the upper half-
plane where ~ >0. It is evident, therefore, that the derivative of @m

with respect to { will be continuous along the plane ~ = O, but the

u

.

J



derivative of ~ with respect to ~ will be

“L!ump”will be of such size that

holds true.

!

I
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discontinuous, and the

It is clearly petissible here ‘againto concentrate
upon the disturbed flow in the upper half-Plane Where ~

attention solely
>0, therefore,-

b~cause the observatiw just mad=-above wi-~ tell one h6w to-ccmpute wh&t
the flow will be im the other lower half-plane, once the former is
obtained.

The boundary conditions in this instance may now be recast.into the
form

provided, as in the previous section, one sets up the convenient con-
vention that @(x,y) is to represent a periodic function in y that
is to be equal to the values taken onby the function G(x,y) at the
wing’s surface, sud it is to be zero for points lying out of this region.
This definition is to hold throughout the spanwise interval for which
-b~y<bn In addition, the form of @(x,y) is to be assumed, specif-
ically, to have the appearance

while it has also been assumed that the derivative of a function by the
sole psrsmeter upon which it depends Is to be denoted by a dot over the
function, that is,

.

-.
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The integro-differential equation defining ~ may also be immedi-
ately simplified to the compressed expression

Now

equation

Ym&@)+ 3-I

apply a Laplace

(i.e., multiply

@ I~ ~g 4&)(JO+ J2)d~’ = %(E) (9)

transformation to this integro-differential

through by the factor e-P~ sad integrate

)from Oto-rn. Thus, one obtains

where a bar over a symbol serves to indicate that this quantity stands
for the Laplace transform of the function so designated.

Stamiard tables of Lsplace transforms couldbe consulted to check
these results, which may now be simplifiedby noting that

+

.224P-J

Thus the Laplace transforms of equation (9) simplifies to

or the explicit expression for the Laplace transform of the unknown func-
tion ~ is given in the form
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so that finald.yone may invert the transformation to obtain

(lo)

Once having obtained the value of ~, it is easy to write down the
expression for the component of velocity lying in the x-direction aud
located at the wing-surface, because one has shply that this component
is given by the partial derivative of the potential @, taken with respect
to ~, aad evaluated at the plsme of the wing; i.e., one finds that

Furthe?nmre, the formula giving the lift on the wing is just

msl

L = 8pmVm2b2 ~ (-1)
7_ ~(Z/b)

m (11)
-iii-

for m = 1,3,5,. . ., etc.

2, is used to denote the distance along the x-axis
the leading edge of the root chord to the projection

where the symbol,
measured back from
into the plane of synmetry of the trailing edge of the wing-tip profile.

In regard to the moment tsken about the y-axis, it is apparent that
it may be ccmputed frcm the relation:

for m = 1,3,5,. . ., etc.
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5. PROBLEMS HAVING TO DO WITH FLOW PAST BODIES OF REVOLUTION

U

The procedure discussed in the preceding sections c= be extended at
once to apply slso to the solution of problems which are concerned with
the flow over bodies of revolution.

For this purpose let a cylindrical.coordinate system (x,Y,$3) be
set up, and then the equation which governs the potential, $, being
sought will have the form

(13)

Now let R = R(x) be the equation of the meridian line of the body,
and let it be assumed that R is sufficiently small at ti locations
do% the body SO that the direction cosine of the normal to this merid.
ian line, measured from the Y-axis, may be taken to be eqti to unity.

Furthermore, let V~’ stand for the ccmponent, tsken in a direc-

tion perpendicular to the circular cross-section of the body, which
arises from the h@.nging flow which invests the body. Then the boundary
condition which must be satisfied at the surface of the body may be
expressed mathematically by the relation

()a#
% y=R = ‘Vti‘

For sake of simplicity, it is also now assmed that the treatment
to be developed is to be restricted to the case where syoimetrywith

respect to the semipla.nes e =*5 exists in the incident flow. Under

this hypothesis it is convenient to write the normal velocity components
and the potential being sought in the following explicit formulations:

Vti’ = ‘m~Fm(#)sfime1 (14)

@ = V. ~ &(x,Y)F sin m e
m
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If one now inserts the second of the expressions given as equa-
tion (14) into the differential equation governl.ngthe flow (13), it
wi12 be found that the defining equation for the potentisl will have
the form

and the boundary condition t- out to be

‘(yvm)
ay y=~ = ‘Fm

(15)

(U ‘ )

A suitable solution to equation (15), which can be made to sati.sfy
the boundary condition being imposed as equation (15’), will be found
to be

where

(16)
●

✎

o

#of= fo(x-BY cosh u)du
SJ?C cosh ~

BY
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Thus, the successive individual potentials are given by the emressionsl

J
o

Yjil= -B fl(x-BY cosh U) cosh U du

‘c Cosh*

1
0

Yfif2= B2
J

f2(x-BY cosh U) cosh2 U du

}

(17)
SXC cosh &

etc. J
Upon imposition of the requirement that the boundary condition (1~’)

is to be satisfied, one obtains a set of integral equations which serve

%ranslator’s note: It was pointed out on page 630 of an article
by R. H. Crsmer in the Journal of the Aeronautical Sciences, vol. 18,
no. 9, September 1951, entitled “~terference Between Wing and Body at
Supersonic Speeds - Theoretical and Experimental Detemi~tion of
Pressures on the E!dy,” that the result given here for ~, for m> 1,
is incorrect; the correct formula is, for m ‘ 2)

Y2!32=B2 r“ f2(x-BY cosh u)(2 cosh2
‘=C cosh &

while, in general, the use of hyperbolic functions of
argument u gives a more compact form, which is easy
in genersl it is true that

u- 1) du

multiples of the
to work with; i.e.,

F& = &( -l)m f’ fm(x-BY coshu)(cosh mu) du
arC cosh ~
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to determine the arbitrary functions fm, which are
Thus, applying these conditions, one finds that2

J

o
B~l (.l)~l ~m(x-BR cosh U) (c06h

arc cosh ~

NACA TM 1X1

ap riori inknown.

The determination of the vslues of the ~m’s appearing in formula (18)

may be carried out by using a step-by-step procedure which is entirely
analogous to the one employed by Von I&- in his work on determining
the flow about a body of revolution at zero angle of attack.

It is important to point out that if one
late the force distribution along the axis of
spending moment, snd if one is not interested
ties or pressures around the body, then it is
calculate $0 and $2.

only has in mind to cslcu-
the body and the corre-
in knowing the local veloci-
merely necessary to

6. APPLICATIONS ●

The procedure that has been propounded above has been applied (ref. 2) -
to the situation arising in the study of the question of wing-body inter-
ference. The wing-body configuration considered in this particular appli-
cation of the method is depicted in the appended figure 3.

The wing used in this configuration is a flat plate, whose semispan
is equal to 4R0, where R. is the radius of the circular cross-section

taken through the body at the location where the body is widest. The
leading edge of this wing is located 5R0 downstream from the tip of the
nose of the body. The free-stream flow is impinging on the body at a
speed which is twice the speed of sound in the undisturbed stream.

2Translat0r’S note: In view of the correction pointed out in Note 1
above, it will be seen that this formula for determining the fm tictiOnS
is also incorrect, except for m = 1; for higher integral.values of m,
the correct formula is:

N+l ( -l)m+lT &(x-BR cosh u) ~oshmu cosh ~ du = -Fm

‘c Cosh 67

.

,’
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The curves shown in figure 3 give the value of the pressure coeffi-

‘+cient, - , out along the span of the wing, in the mid-chord loca-

*CU

tion (i.=., along the wing sxis), for points on the upper (dorsal) side
of the wing. These coefficients have been calculatedly the method out-
lined in section 4, and there are shown results for various angles of
attack, which apply to such points on the upper side of the wing pro-
files at their mid-chord positions.

In addition, sane expertiental test points obtainedby R. H. Crsmer
(see ref. 2) srealso plotted onthese curves. These results were
obtained from experiments carried out in the supersonic tunnel of the
Daingerfield Aeronautical Laboratory.

The agreement between the computed and experhnentally determined
results is very good from a qualitative viewpoint. In regardto the
more precise details of’the quantitative comparison between the results
It is worthy of note that the experimental results exhibit a certain
smount of dissymmetry as one passes from positive emgles of attack to
negative angles of attack. Such a dissymmetry cannot be predicted, or
should not be expected, from the type of theoretical.treatment being
considered here.

In order to bring about a more valid comparison of these results,
it would appear logical, in face of such evident dissymmetry, to take
for the representative experimental value, at a given value of the angle
of attack, p, the one which is obtained frmn averaging the result
obtained for en angle of attack equal to +~ with the result obtained
at -P● Such average values have been cmrputed and are designated in
the plots of figure 3 by means of solid circles. These adjusted values
lie much closer to the theoretically derived curves at almost all
locations.

Translated by R. E. Cramer
Cornell Aeronautical Laboratory, Inc.
Buffalo, New York
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Figure l.- Orientationofcoordinateaxes and locationoftypicalwing
planform therein.
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Figure 20- Definitionoftheintervalofpsriodicityrequiredforapplication
oftheFourier seriestechniquewhen leadingedges are subsonic.
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